No Image

Частота воды

СОДЕРЖАНИЕ
0 просмотров
10 марта 2020

При комнатной температуре молекулы воды не находятся в покое, а постоянно
генерируют сложные комплексные колебания, которые обнаруживаются с помощью электромагнитной спектроскопии и разделяются с помощью этого метода на
простые составляющие. Даже на уровне
отдельных молекул имеет место явление генерации широкого спектра колебаний, феномена, сходного с работой антенны-передатчика. Атомное ядро, состоящее из протонов и нейтронов, генерирует колебания н микроволновой части спектра. Электронная оболочка атома излучает низкочастотные колебания, относящиеся к области величин, измеряемых в герцах и килогерцах.
Связь кислорода с водородом характеризуется излучением и инфракрасной части спектра. Угол, образуемый между связями обоих атомов водорода с атомом кислорода, характеризует генерацию колебаний в инфракрасной и микроволновой области. И наконец, за счет воздействия дневного света происходит постоянное возбуждение электронов, расположенных па "валентной" оболочке: в течение одной десятимиллионной доли секунды электроны отрываются от нее и спонтанно возвращаются обратно с высвобожде-нием светового кванта (фотона). При этом частота колебаний молекул воды достигает максимальной величины — порядка 1015 герц. Как видно из приводимых величин, спектр частотных колебаний молекул воды очень широк. Еще более обширным спектром характеризуются кластеры воды.
Отдельные молекулы воды, каждая из которых является диполем (который в целом нейтрален), присоединяются друг к другу следующим образом: между атомами водорода одной молекулы, обладающими частично положительным зарядом, и атомом кислорода другой молекулы с частично отрицательным зарядом образуются связи, называемые водородными мостиками. Вокруг этих связей, задающих структуру псевдополимерной цепи, собственно и вращаются молекулы воды (см. рис. 3).

Излучаемые при этом колебания характеризуются частотами инфракрасного спектра. Разумеется, при фактической величине кластера, составляющей около 400 взаимосвязанных молекул, возможно бесчисленное количество различных конфигураций этих структур.

На рис. 4 приведены для сравнения два вещества, способные к накоплению информации: вода и железо. Способность железа к сохранению информации используется, как известно, при изготовлении дискет для компьютера и магнитной ленты. В стабильном состоянии оно также не утрачивает этой способности за счет так называемых ионных переходов.

На рис, 4а изображены ионы железа, которые объединены в группы (подобно кластерам воды), причем объединяющей силой здесь выступает магнитное поле, а ионы выстраиваются в соответствии со своими магнитными полями. С развитием квантовой физики удалось объяснить, почему происходит не отталкивание, а притягивание одноименно заряженных частиц. Выяснилось, что эти группы образуют домены или области Вайсса (они были названы так в честь французского физика П.-Е. Вайсса). Эти области разделяются "стенками Блоха" (их впервые обнаружил швейцарский физик Ф. Блох). Для ионов железа, как и для воды, типично постоянное генерирование электромагнитных волн. Частотный спектр зависит от структуры. В результате ионных переходов, перегруппировки атомарной структуры железа меняется и спектр колебаний (подобно отдельным частотам, характеризующим различные связи в молекулах и кластерах).
У воды (аналогично "стенкам Блоха" у
железа) также существуют разделяющие "перегородки" между электрическими диполями, которые называются в математике петлями или узлами (англ.: kinks). Если, как это показано на рис. 4Ь, диполи двух соседних кластеров, которые могли бы быть связаны, поляризованы противоположно по отношению друг к другу, имеет место их разворот по отношению друг к другу на 180° (или р, тогда как полный круг 360°=2р). Отсюда происходит название представленного на рис. 4Ь узла, который называют p-kink.
Эти узлы, подобно электронам, генерируют колебания в очень низком частотном спектре. Кластеры характеризуются колебаниями в области кило- и мегагерц. Таким образом, "кластерная" вода обладает существенно большим количеством резонансных частот, чем единичные молекулы воды,

Вода обладает способностью к сохранению информации

С позиций квантовой физики можно объяснить, каким образом вода может в течение долгого времени сохранять информацию, то есть стабильно сохранять определенную структуру. До недавнего времени считалось, что связывание за счет водородных мостиков является настолько слабым, что кластеры нестабильны, постоянно разрушаются и образуются вновь. Действительно, это касается части молекул воды, образующей структуру, называемую вода I, организованную хаотично и текучую в обычном смысле этого слова. Но существует и другая "часть" воды, иначе называемая вода II, со структурой, аналогичной кристаллу. В воде II во- дородные мостики связаны в 20 раз прочнее, чем в воде I (рис. 3).
Вращение в цепочке, образованной диполями, осуществляется синхронно, поэтому связь усиливается за счет электромагнитного взаимодействия между отдельными молекулами. Теоретически фактор усиления составляет V400 = 20 (400 — это среднее количество отдельных молекул в кластере). На самом деле практика показала, что структура воды II может оставаться стабильной любое количество времени, но до того момента, пока она не испытает па себе воздействие сильных полей помех (сильные магнитные поля, рентгеновское излучение и т. д.). В клинике Роберта Боша в Штутгарте в сейфе находятся гомеопатические препараты, которые Ганеман более 150 лет тому назад динамизировал собственными руками. Эти соединения обладают таким же частотным спектром, как и свежеприготовленные гомеопатические препараты.

Вода вместо бензина

Обычный элекролиз воды требует тока, измеряемого в амперах, ячейка Мэйер производит тот же эффект при милиамперах. Более того, обыкновенная водопроводная вода требует добавления электролита, например, серной кислоты, для увеличения проводимости; ячейка Мэйер действует при огромной производительности с чистой водой.

Согласно очевидцам, самым поразительным аспектом клетки Мэйер было то, что она оставалась холодной даже после часов производства газа.

Эксперименты Мэйер, которые он счел возможными представить к патентованию, заслужили серию патентов США, представленные под Секцией 101. Представление патента под этой секцией зависит от успешной демонстрации изобретения Патентному Рецензионному Комитету.

Клетка Мэйер’а имеет много общего с электролитической ячейкой, за исключением того, что она работает при высоком потенциале и низком токе лучше, чем другие методы. Конструкция проста. Электроды — отсылаем заинтересовавшихся к Мэйер’у — сделаны из параллельных пластин нержавеющей стали, образующие либо плоскую, либо концентрическую конструкцию. Выход газа зависит обратно пропорционально расстоянию между ними; предлагаемое патентом расстояние 1.5 мм дает хороший результат.

Читайте также:  Комплексный препарат от глистов для кошек

Значительные отличия заключаются в питании ячейки. Мэйер использует внешнюю индуктивность, которая образует колебательный контур с емкостью ячейки, — чистая вода, по-видимому, обладает диэлектрической проницаемостью около 5, — чтобы создать параллельную резонансную схему.

Она возбуждается мощным импульсным генератором, который вместе с емкостью ячейки и выпрямительным диодом составляет схему накачки. Высокая частота импульсов производит ступенчато поднимающийся потенциал на электродах ячейки до тех пор, пока не достигаеся точка, где молекула воды распадается и возникает кратковременный импульс тока. Схема измерения тока питания выявляет этот скачок и запирает источник импульсов на несколько циклов, позволяя воде восстановиться.

Химик-исследователь Keith Hindley предлагает следующее описание демонстрации ячейки Мэйер’а: "После дня презентаций, Griffin комитет засвидетельствовал ряд важных свойств WFC (водяная топливная ячейка, как назвал ее изобретатель).

Группа очевидцев независимых научных наблюдателей Великобритании свидетельствовала что американский изобретатель, Стэнли Мэйер, успешно разлагает обыкновенную водопроводную воду на составляющие элементы посредством комбинации высоковольтных импульсов, при среднем потреблении тока, измеряемого всего лишь милиамперами. Зафиксированный выход газа был достаточным, чтобы показать водородно-кислородное пламя, которое мгновенно плавило сталь.

По сравнению с обычным сильноточным электролизом, очевидцы констатировали отсутствие какого-либо нагревания ячейки. Мэйер отказался прокомменировать подробности, которые бы позволили ученым воспроизвести и оценить его "водяную ячейку". Однако, он представил достаточно детальное описание американскому Патентному Бюро, чтобы убедить их, что он может обосновать его заявку на изобретение.

Одна демонстрационная ячейка была снабжена двумя параллельными электродами возбуждения. После наполнения водопроводной водой, электроды генерировали газ при очень низких уровнях тока — не больше, чем десятые доли ампера, и даже милиамперы, как заявляет Мэйер, — выход газа увеличивался, когда элекроды сдвигались более близко, и уменьшался, когда они отодвигались. Потенциал в импульсе достигал десятков тысяч вольт.

Вторая ячейка содержала 9 ячеек с двойными трубками из нержавеющей стали и производила намного больше газа. Была сделана серия фотографий, показывающая производство газа при милиамперном уровне. Когда напряжение было доведено до предельного, газ выходил в очень впечатляющем количестве.

"Мы обратили внимание, что вода вверху ячейки медленно стала окрашиваться от бледно-кремового до темно-коричневого цвета, мы почти уверены в влиянии хлора в сильно хлорированной водопроводной воде на трубки из нержавеющей стали, использованные для возбуждения".

Он продемонстрировал производство газа при уровнях милиампёр и киловольт.

"Самое замечательное наблюдение — это то, что WFC и все его металлические трубки остались совершенно холодные на ощупь, даже после более чем 20 минут работы. "Раскалывающий молекулы" механизм развивает исключительно мало тепла по сравнению с элекролизом, где элекролит нагревается быстро."

Результат позволяет рассмотреть эффективное и управляемое производство газа, которое быстро возникает, и безопасно в функционировании. Мы ясно увидели, как увеличение и уменьшение потенциала используется, чтобы управлять производством газа. Мы увидели, как поток газа прекращался и начинался вновь, соответственно когда напряжение на входе было выключено и вновь включено."

"После часов обсуждения между собой, мы заключили, что Steve Мэйер явился, чтобы изобрести совершенно новый метод для разложения воды, которая обнаруживала некоторые черты классического элекролиза. Это подтверждается тем, что его устройства, реально работающие, взятые из его коллекции, удостоверены американскими патентами на разные части WFC системы. Так как они были представлены под Секцией 101 Патентным Бюро США, аппаратура, включенная в патентах, проверена экспериментально экспертами американского Патентного Бюро, их вторыми экспертами и все заявления были установлены."

"Основной WFC подвергался трехлетнему испытанию. Это подняло предоставленные патенты до уровня независимого, критического, научного и инженерного подтверждения того, что устройства фактически работают, как описано."

Практическая демонстрация ячейки Мэйер’а является существенно более убедительной, чем псевдо-научный жаргон, который использован для

объяснения. Изобретатель лично говорил об искажении и поляризации молекулы воды, приводящему к самостоятельному разрыву связи под действием градиента электрического поля, резонанса в пределах молекулы, который усиливает эффект.

Не считая обильного выделения кислорода и водорода и минимального нагревания ячейки, очевидцы также сообщают, что вода в внутри ячейки исчезает быстро, переходя в ее составные части в виде аэрозоли из огромного количества крошечных пузырей, покрывающих поверхность ячейки.

Мэйер заявил, что у него работает конвертер водородно-кислородной смеси в течение последних 4 лет, использующий цепочку из б цилиндрических ячеек.Он также заявил, что фотонное стимулирование пространства реактора светом лазера посредством опто -волокна увеличивает производство газа.

Это изобретение описывает топливную камеру и процесс, в котором молекулы воды разбиваются на водород и кислород, и другие, растворенные в воде газы. Здесь и далее используется термин "топливная ячейка", относящийся к данному изобретению, содержащему конденсаторную водяную камеру, которая, как будет объяснено далее, вырабатывает топливный газ в соответствии с описанным методом.

Краткое описание рисунков


РИСУНОК 1. Иллюстрирует теоретические основы явлений, наблюдаемых во время функционирования изобретения.


РИСУНОК 2. Иллюстрирует схему, используемую в процессе.


РИСУНОК 3. Блок схема.


РИСУНОК 4. Показывает "водяной конденсатор" в перспективе. Описание лучшей реализации

Кратко, изобретение представляет собой метод получения смеси водорода и кислорода v других растворенных в воде газов.

Процесс заключается в следующем:

(A) конденсатор, в котором вода заключена в качестве диэлектрической жидкости между обкладками, включенный в последовательную резонансную схему с дросселем;

(B) к конденсатору прикладывается пульсирующее однополярное напряжение, в котором полярность никак не связана с внешним заземлением, благодаря чему молекулы воды в конденсаторе подвержены заряду той же полярности и молекулы растягиваются под действием электрических полярных сил;

(C) подбирают частоту импульсов, поступающих на конденсатор, соответствующую собственной частоте резонанса молекулы;

(D) продолжительное действие импульсов в режиме резонанса приводит к тому, что уровень колебательной энергии молекул возрастаете каждым импульсом;

(E) комбинация пульсирующего и постоянного электрического поля приводит к тому, что в некоторый момент сила электрической связи в молекуле ослабляется настолько, что сила внешнего электрического поля превосходит энергию связи, и атомы кислорода и водорода освобождаются как самостоятельные газы;

(F) сбор готовой к употреблению смеси кислорода, водорода и других растворенных в воде газов в качестве топлива.

Читайте также:  Айдахский кролик пигмей

Последовательность процессов показана в следующей Таблице 1, в которой толекулы воды подвергаются увеличению электрических сил. В обычном состоянии, наугад ориентированные молекулы воды выравниваются по отношению к внешнему полю.

Конструкционные параметры, основанные на знании теоретических принципов, позволяют рассчитать энергию постоянного и импульсного тока, необходимого для разложения воды.

Последовательность состояний молекулы воды и/или водорода/кислорода/других атомов:

B. ориентация молекул вдоль силовых линий поля

C. поляризация молекулы

D. удлиннение молекулы

E. разрыв ковалентной связи

F. освобождение газов

Оптимальный выход газа достигается в резонансной схеме. Частота подбирается равной резонансной частоте молекул.

Для изготовления пластин конденсатора отдается предпочтение нержавеющей стали марки Т-304, которая не взаимодействует с водой, кислородом и водородом. Начавшийся выход газа управляется уменьшением эксплуатационных параметров. Поскольку резонансная частота фиксирована, производительностью можно управлять с помощью изменения импульсного напряжения, формы или количества импульсов.

Повышающая катушка намотана на обычном тороидальном ферритовом сердечнике 1.50 дюйма в диаметре и 0.25 дюйма толщиной. Первичная катушка содержит 200 витков 24 калибра, вторичная 600 витков 36 калибра.

Диод типа 1ISI1198 служит для выпрямления переменного напряжения. На первичную обмотку подаются импульсы скважности 2. Трансформатор обеспечивает повышение напряжения в 5 раз, хотя оптимальный коэффициент подбирается практическим путем.

Дроссель содержит 100 витков калибра 24, в диаметре 1 дюйм. В последовательности импульсов должен быть короткий перерыв.

Через идеальный конденсатор ток не течет. Рассматривая воду как идеальный конденсатор, убеждаемся, что энергия не будет расходоваться на нагрев воды.

Реальная вода обладает некоторой остаточной проводимостью, обусловленной наличием примесей. Идеально, если вода в ячейке будет химически чистой. Электролит к воде не добавляется.

В процессе электрического резонанса может быть достигнут любой уровень потенциала. Как отмечалось выше, емкость зависит от диэлектрической проницаемости воды и размеров конденсатора.

В примере схемы РИСУН. 1 два концентрических цилиндра 4 дюймов длиной составляют конденсатор. Расстояние между поверхностями цилиндров 0.0625 дюйма. Резонанс в схеме был достигнут при импульсе 26 вольт, приложенном к первичной обмотке. В любой резонансной схеме при достижении резонанса ток минимален, а выходное напряжение максимально. Расчет резонансной частоты традиционный. Вторую индуктивность подстраивают в зависимости от чистоты воды так, чтобы потенциал, приложенный к воде, был постоянен. Расход воды контролируется любым подходящим способом.

Диод 1141198 можно заменить на NTE5995 или ECG5994. Это импульсные диоды на 40 ампер 600 вольт (40 А — куда столько?!). Нержавеющая сталь Т304 великолепна, но но другие типы должны работать так же. Т304 просто более доступна.Внешняя трубка подгоняется под размер 3/4 дюйма 16 калибра (толщина стенки 0.06 дюйма), длиной 4 дюйма.Внутренняя трубка диаметром 1/2 дюйма 18 калибра (стенка 0.049 дюйма, это приблизительный размер для этой трубки, фактический калибр не может быть вычислен из патентной документации, но этот размер должен работать), 4 дюйма длиной.

Вам потребуется присоединить два проводника к трубкам. Используйте для этого нержавеющие стержни и БЕСКИСЛОТНЫЙ ПРИПОЙ! (когда-нибудь эта вода все равно вернется в ваш водопроводный кран).

Вы должны также предусмотреть, чтобы трубки были разделены. Это можно сделать с помощью небольшого куска пластика. Он не должен препятствовать свободному прохождению воды. Не указано, должна ли быть вода внутри трубки. Думается, что она там есть, но это совершенно не влияет на работу прибора.

Частота не была напечатана, исходя из размера катушек и трансформатора, частота не превышает 50 Mhz. He упирайтесь в этот факт, это всего лишь моя догадка.

Если вы хотите сделать некоторые деньги, делайте что-то ПРАКТИЧЕСКОЕ, что РАБОТАЕТ и что ЛЮДИ могут использовать в их повседневной жизни, потом продавайте!

В предыдующей статье«Как работает ячейка Мэйера? Двигатель на воде», мы с Вами пытались разобраться в качестве статьи, описывающей работу ячейки Мэйера. Пришло время «снять с ушей лапшу» и раскрыть то, что скрыто за выделенными ранее пунктами №№ 9, 11, 13, 16, 18, 19. А это именно то звено цепи загадок, которого нам очень не хватает.

Итак перечислим их ещё раз:

Пункт 9. Вторая ячейка содержала 9 ячеек с двойными трубками из нержавеющей стали и производила намного больше газа.

Пункт 11. Изобретатель лично говорил об искажении и поляризации молекулы воды, приводящему к самостоятельному разрыву связи под действием градиента электрического поля, резонанса в пределах молекулы, который усиливает эффект.

Пункт 13. Подбирают частоту импульсов, поступающих на конденсатор, соответствующую собственной частоте резонанса молекулы.

Пункт 16. Два концентрических цилиндра 4 дюймов длиной составляют конденсатор. Расстояние между поверхностями цилиндров 0.0625 дюйма.

Пункт 18. Внешняя трубка подгоняется под размер 3/4 дюйма 16 калибра (толщина стенки 0.06 дюйма), длиной 4 дюйма. Внутренняя трубка диаметром 1/2 дюйма 18 калибра (стенка 0.049 дюйма, это приблизительный размер для этой трубки, фактический калибр не может быть вычислен из патентной документации, но этот размер должен работать), 4 дюйма длиной.

Пункт 19. Не указано, должна ли быть вода внутри трубки. Думается, что она там есть, но это совершенно не влияет на работу прибора.

Попробуем объединить эти 6 пунктов в два пункта:

1. Размеры: Ячейка состоит из двойных трубок 4 дюймов длиной: внешняя трубка диаметром 3/4 дюйма 16 калибра (толщина стенки 0.06 дюйма); внутренняя трубка диаметром 1/2 дюйма 18 калибра (стенка 0.049 дюйма)

2. Что то, о резонансе воды: Резонансная частота собственных колебаний молекулы воды — резонанс в пределах молекулы, и должна ли быть вода внутри трубки?

Попытаемся найти взаимосвязь этих пунктов и раскроем секрет ячейки Мэйера:

Поищите в умной книге или Интернете резонансную частоту собственных колебаний молекулы воды… Я встречал много различных значений. «Молекулярщики» описывают частоту колебаний длинами волн. Как правило, это инфракрасный диапазон длин волн. Приводятся и другие диапазоны и значения. Этому посвящена отдельная статья. В трудах преподавателя Благовещенского СГА — Ерёминой Н.В. (которые в настоящее время в Интернете заражены компьютерным вирусом, а те, что не заражены — требуют регистрации, предполагаю и то и другое сделано специально) резонансная частота собственных колебаний молекулы воды равна:

Читайте также:  Воспаление тонкого кишечника у собаки

Можно предположить, что это значение не соответствует действительности, но я склонен этому верить лишь потому, что работы Ерёминой Н.В. подтверждаются расчётами и другими серьёзными аргументами. Продолжим: Частота f (Гц) связана с фазовой (циклической) частотой соотношением:

, откуда получаем:
подставляем значения:

Определим длину волны, которая вычисляется через скорость света:

не подумайте, что здесь ошибки — Мм/с — это мегаметры в секунду, а не миллиметры.

Частота очень высокая, а длина волны очень маленькая. Это означает, что для образования резонанса на такой частоте нужен волноводный резонатор. Добро пожаловать в «Технику СВЧ». Помнится Вы, собирались вызвать резонанс воды на частоте около 50 мегагерц? И даю совет умникам: не пытайтесь добиваться резонанса воды с помощью магнетрона от микроволновки! Результата в экспериментах не добъётесь, а «стоять будет лишь на половину шестого», и то сказать, это самые лёгкие последствия, может быть и хуже! Не забывайте, что Ваши мозги состоят из воды, во время экспериментов с микроволновкой, они могут случайно свариться! Частота магнетрона микроволновой печи фиксирована и имеет более низкое значение, поэтому и смысла нет рисковать здоровьем.

В соответствии с утверждением Мэйера, необходимо получить явление резонанса на указанной частоте, а на этой частоте резонансным контуром молекул воды может быть только «замкнутый» волновод или — волноводный резонатор. Для простейшего типа колебаний (а у нас именно такие), собственная частота резонатора определяется его диаметром:

Из приведённых формул находим:

D = 23 000 / 18 861 = 1,22 см или то же значение: D = 1,59 / 1,3 = 1,22 см

где D — внутренний диаметр резонатора. Представьте, что внутренняя трубка ячейки Мэйера, это – круглый волноводный резонатор. Попытаемся определить его внутренний диаметр из описаний, имеющихся в статье «Вода вместо бензина». Возьмём значения указанные в той статье и пересчитаем в миллиметры:

Зная, что 1 дюйм = 2,54 см, пересчитываем:

  • внутренняя трубка диаметром 1/2 дюйма (18 калибра) = 1,27 см
  • толщина стенки внутренней трубки = 0,049 дюйма = 0,1245 см
  • внутренний диаметр внутренней трубки = 1,27 – ( 0,1245 * 2 ) = 1,021 см

Сравните полученный результат с полученным диаметром резонатора. Разница в 2 миллиметра. Но если внимательнее посмотреть на указанные в статьях Мэйера размеры, то станет ясно, что более точные размеры указаны только для толщины трубок, а сами диаметры даны с точностью — «сотня прыжков блохи туда, вторая сотня обратно – трамвайная остановка». Точность в статье указана с допуском 1/4 дюйма, а это целых 6 миллиметров. Не понятно, кто хотел скрыть необходимость точного соблюдения размеров — Мэйер, или те, кому достались остатки его установки, сделано это по незнанию, или специально? Я думаю, Вас должно заинтересовать некоторое совпадение размеров!

Выводим правило: Внутренний диаметр внутренней трубки ячейки Мэйера напрямую связан с резонансной частотой собственных колебаний молекулы воды, и должен быть 1,22 см. Для поддержания резонанса, его отклонение на 0,02 (две сотых) сантиметра не допустимо, так как резко изменит резонансную частоту трубки-резонансного контура.

Исходя из полученного диаметра внутренней трубки, получим остальные размеры:

  1. внутренний диаметр внутренней трубки = 1,22 см
  2. толщина стенки внутренней трубки (приблизительно) = 0,15 см
  3. внешний диаметр внутренней трубки = 1,22 + ( 0,15 * 2 ) = 1,52 см
  4. внутренний диаметр внешней трубки = 1,52 + ( 0,15 * 2 ) = 1,82 см
  5. толщина стенки внешней трубки (приблизительно) = 0,2 см
  6. внешний диаметр внешней трубки = 1,82 + ( 0,2 * 2 ) = 2,22 см

Вообще толщина самих трубок для резонанса совершенно не важна, а влияет лишь на жёсткость и массу конструкции. Для получения резонанса молекул воды и высокой производительности установки, важны следующие размеры:

  1. внутренний диаметр внутренней трубки = 1,22 см
  2. расстояние между трубками = 1,5 . . . 2,0 мм
  3. длина трубок должна быть кратна длине волны, помноженный на коэффициент укорочения, т.е. числу = 1,22 см, судя по описанию установки (4 дюйма), это может быть длина = 9,76 см (укладывается 8 длин волн, что не противоречит явлению резонанса).

Теперь Мы смело можем сказать: Секрет ячейки Мэйера открыт!? К сожалению, не до конца!

Заключение

В заключение этой статьи хочу написать: Готовьте трубки — резонансный контур молекул воды из нержавейки указанного размера, отклонение на две десятых миллиметра не допустимо. Причём электодинамика сверхвысоких частот обмана не терпит. Это должны быть цельные трубки, если на них имеется продольный шов, то внутри трубки он не должен быть виден вообще. Не важно, из какой марки нержавейки они будут сделаны. Внутренний диаметр, должен быть точным, а полость трубок должна быть зеркально ровной, с отсутствием царапин. Забегая вперёд, скажу: Важным фактом является то, что у рабочей установки, поверхности трубок со временем станут матовыми, это нормальное явление.

Одних трубок не достаточно, чтобы реализовать ячейку Мэйера, для этого необходимо сообразить, как осуществить накопление, передачу энергии в ячейку и вызвав резонанс воды получить на выходе водородно-кислородную смесь. Анализ и свой взгляд на разгадки я предлагаю в последующих статьях. Любой процесс, или явление, которые умные люди пытаются добиться, рассматриваются не с начала, а с конца. Другими словами мы не должны делать установку, под характеристики которой, будем подгонять конечный результат. Необходимо изучить предполагаемый нами процесс (явление), под которые в последующем мы создадим установку. Для этого, нам необходимо изучить: Что такое вода, какова её структура? Что такое молекула воды, какова её структура? Какие условия необходимо создать, чтобы молекула воды могла разделиться на водород и кислород с минимальными затратами энергии? Это мы попытаемся рассмотреть в следующей статье — «Строение молекул воды, их связи и свойства».

Тимеркаев Борис — 68-летний доктор физико-математических наук, профессор из России. Он является заведующим кафедрой общей физики в Казанском национальном исследовательском техническом университете имени А. Н. ТУПОЛЕВА — КАИ

Комментировать
0 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Животные
0 комментариев
No Image Животные
0 комментариев
No Image Животные
0 комментариев
Adblock detector